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ABSTRACT

A fuzzy logic algorithm has been developed for the purpose of segregating precipitating from nonprec-
ipitating echoes using polarimetric radar observations at C band. Adequate polarimetric descriptions for
each type of scatterer are required for the algorithm to be effective. An observations-based approach is
presented in this study to derive membership functions and objectively weight them so that they apply
directly to conditions experienced at the radar site and to the radar wavelength. Three case studies are
examined and show that the algorithm successfully removes nonprecipitating echoes from rainfall accumu-

lation maps.

1. Introduction

A major challenge in radar rainfall estimation is the
detection and subsequent removal of nonprecipitating
echoes such as ground clutter, sea clutter, clear air ech-
oes, anomalous propagation of the beam, and chaff
(i.e., thin, metallic-coated fibers released from military
aircraft) from radar images. These targets have scatter-
ing characteristics that often resemble precipitating
echoes. Errors in radar rainfall estimates have been
shown to propagate nonlinearly in hydrologic forecasts
of streamflow (Faures et al. 1995; Frank et al. 1999;
Ogden et al. 2000; Droegemeier et al. 2000). The accu-
racy and timeliness of flash flood and river flood fore-
casts are limited by the accuracy of radar-derived pre-
cipitation.

Steiner and Smith (2002) provide an excellent sum-
mary of existing techniques to mitigate radar returns
from ground clutter. They conclude that their algorithm
yields improvement but fails in situations with strong,
widespread clear air echoes and when anomalous
propagation echoes are embedded in precipitation. Po-
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larimetric radars transmit horizontally and vertically
polarized waves, enabling them to measure the hori-
zontal and vertical components of the backscatter am-
plitude. Additional information is provided by the mag-
nitude and argument of the copolar cross-correlation
coefficient between horizontal and vertical backscatter
amplitudes. These polarimetric variables supply more
information about the properties of meteorological and
nonmeteorological scatterers compared to measure-
ments from nonpolarimetric radars. To determine the
benefits offered by polarimetry on improving the qual-
ity of rainfall accumulation products, an algorithm is
developed that uses polarimetric variables alone. It is
envisioned that future algorithms designed to improve
data quality will integrate polarimetric observations
into techniques that have already been developed using
nonpolarimetric observations (e.g., Steiner and Smith
2002).

Algorithms designed to discriminate scatterers (e.g.,
ground clutter, precipitation) are based on thresholds,
decision trees, fuzzy logic, neural networks, and com-
binations therein. Ryzhkov and Zrnic (1998) presented
a threshold-based approach to rainfall estimation at S
band when ground clutter is present. The identification
of ground clutter was accomplished by establishing
thresholds based on values of the cross-correlation co-
efficient [pyyv(0)] less than 0.7. Values of the standard
deviation of differential propagation phase measure-
ments (Ppp) within 17 consecutive range gates greater
than 12° were also used to detect ground clutter. Fuzzy
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logic algorithms readily accommodate radar data be-
cause polarimetric measurements, especially differen-
tial reflectivity (Zpgr) and ®p, are inherently associ-
ated with noise. The magnitude of noise of polarimetric
variables depends on many factors related to the radar
hardware (e.g., antenna design, radome construction),
its operating characteristics (e.g., pulse repetition fre-
quency, dwell time), as well as the propagation and
scattering characteristics of the targets (e.g., Doppler
spectrum width). Fuzzy logic algorithms consider mul-
tiple radar observations; thus, the impact of a single
noisy measurement is minimized. Algorithms have
been used to identify ground clutter using Doppler ra-
dar data and to classify different hydrometeor types
using polarimetric observations (Straka and Zrnic 1993;
Holler et al. 1994; Straka 1996; Zrnic and Ryzhkov
1999; Vivekanandan et al. 1999; Liu and Chandrasekar
2000; Kessinger et al. 2001; Zrnic et al. 2001; May and
Keenan 2005). Bringi and Chandrasekar (2001) present
a detailed description of fuzzy logic algorithms, while
Zrnic et al. (2001) highlight their differences.

The key to a successful fuzzy logic algorithm lies in
the accuracy and applicability of functions used to de-
scribe the scatterers. Typically, qualitative knowledge
acquired through simulations or observations concern-
ing the range of values a scatterer possesses is formu-
lated into a quantitative membership function. The
membership functions in Zrnic et al. (2001) have trap-
ezoidal shapes, while those of Liu and Chandrasekar
(2000) are continuously differentiable beta functions.
Once these functions have been derived for a given
location, they may not be applicable to another radar
that encounters different scatterers or may be operating
at a different wavelength. A new, automated method-
ology of empirically deriving membership functions is
developed in this study. While the membership func-
tions derived in this study apply to C-band radars and
the scatterers typically encountered near the Trappes
radar (described below), the methodology of objec-
tively defining membership functions is readily appli-
cable at X, C, and S bands. It is unique in that it applies
directly to the radar wavelength and characteristics spe-
cific to the radar site, such as beam propagation paths.

Membership functions provide a quantitative de-
scription of a given scatterer. The polarimetric proper-
ties of ground clutter, chaff, birds, and insects have
been reported in the literature primarily at S-band fre-
quency. Zrnic et al. (2006) found that, while mean val-
ues of pyy(0) are generally lower in ground clutter than
in precipitation, the distribution of pyy(0) in ground
clutter is broad and contains values that are commonly
measured in precipitation. The use of py(0) alone is
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inadequate to totally remove anomalous propagation
and ground clutter echoes from reflectivity (Zy) and
Zpr fields. The polarimetric properties of chaff have
been described and compared to theoretical findings
(Zrnic and Ryzhkov 2004). Chaff echoes are character-
istic of values of py(0) between 0.2 and 0.5, ®,p mea-
surements of the receiver component of the system dif-
ferential propagation phase, and values of Zy, be-
tween 0 and 6 dB at S band. Chalff is readily identified
and thus separated from snow and rain echoes based on
a simple threshold of pyy(0) < 0.6. The polarimetric
properties of birds and insects have been intensively
studied (e.g., Wilson et al. 1994; Zrnic and Ryzhkov
1998; Zhang et al. 2005). Insects have ratios of horizon-
tal-to-vertical cross sections of 3:1 and equivalent
spherical diameters of 10 mm. The differential reflec-
tivity of insects has been observed to remain constant
with viewing angle, whereas the differential reflectivity
with birds varies between -2 and 4 dB at S band, de-
pending on the size of the birds and the viewing angle.
Mie scattering occurs with birds; thus, different values
of Zpr are expected at X and C bands.

The French national weather service, Météo-France,
has been operating a C-band polarimetric radar in si-
multaneous transmission and reception mode continu-
ously since the summer of 2004. The transmitted pulses
have a width of 2 us, a frequency of 5.64 GHz, a peak
power of 250 kW, and pulse repetition frequencies of
379, 321, and 305 Hz. The 3-dB beamwidth of the 3.7-
m-diameter antenna is less than 1.1°. A detailed de-
scription of the radar system and the quality of the raw
variables is provided in Gourley et al. (2006). The po-
larimetric variables measured by this radar are Zy,
Zbrs puv(0), and ®pp. The radar is sited in flat terrain
approximately 30 km to the southwest of Paris in
Trappes, France. Weather services in Europe, Canada,
and Japan are considering upgrading their radar net-
works with dual-polarimetric capabilities. The polari-
metric properties of nonprecipitating echoes have been
studied predominantly at S-band frequency. Thus, a
major goal in this study is to derive membership func-
tions (a key component to a fuzzy logic algorithm)
based solely on polarimetric observations at C band.

The method of isolating scatterers and then empiri-
cally deriving their density functions is described in sec-
tion 2. In section 3 a polarimetric fuzzy logic algorithm
to identify nonprecipitating echoes and then remove
them from rainfall rate and accumulation products is
developed. Three case studies are examined in section
4 to evaluate its performance. A summary, conclusions,
and suggestions for future work are provided in sec-
tion 5.
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2. Characterization of precipitating and
nonprecipitating echoes

a. Methodology

The purpose of this section is to characterize the po-
larimetric signatures of precipitation and nonprecipita-
tion echoes. These properties, which are expressed as
objective functions, will then be used to ultimately
identify nonprecipitation echoes and remove them
from rainfall fields. The different types of nonprecipi-
tation scatterers, also referred to as classes, are first
identified. The choice of these classes depends on the
nonprecipitation scatterers that are commonly encoun-
tered near the radar. In the case of the Trappes radar,
the main contaminants to radar precipitation estimates
are ground clutter from anomalous propagation of the
beam, stationary ground clutter, and clear air echoes.
Other sources, such as sea clutter, may need to be con-
sidered for coastal radars. Clutter from anomalous
beam propagation is distinguished from stationary clut-
ter by the farther ranges (>10 km) at which it is typi-
cally observed. Nonetheless, the scattering sources
(e.g., trees, buildings, towers) are essentially the same;
thus, they are treated jointly as a single class (referred
to as ground clutter hereafter). Vertical refractivity gra-
dients, insects, birds, and other biological targets such
as bats have all been referred to as clear air echoes in
the literature. A concise review of the origin of clear air
echoes is provided in Wilson et al. (1994). While the
term clear air echoes is used throughout this study, in
this context it refers to insects. Chaff is occasionally
observed near the Trappes radar. Its low frequency of
occurrence has little impact on radar-based rainfall
maps compared to echoes from ground clutter and clear
air echoes, so a specific class for chaff is not required for
this radar. However, it was noted that the scattering
and propagation characteristics of chaff and solar ra-
diation differ significantly from precipitation. Thus, in
the event that these targets appear, they will be much
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more likely to be identified as either clear air echoes or
ground clutter instead of precipitation.

First, radar measurements that exclusively represent
ground clutter, clear air echoes, and precipitation are
isolated. An example of radar reflectivity from ground
clutter returns is shown in Fig. 1. Power lines, trees,
buildings, and antennas are responsible for most of the
echoes. Six hours of data (1400-2000 UTC 15 January
2005) at an elevation angle of 0.4° (totaling 24 scans)
were observed to be from ground clutter. These specific
times of the day and year were chosen because radar
images were completely devoid of clear air echoes and
precipitation. The analysis was restricted to observa-
tions within 10 km of the radar to ensure that ground
clutter alone was sampled.

Twenty-four hours of data collected at 1.5° every 15
min on 25 March 2005 (totaling 96 scans) were used to
characterize the polarimetric properties of clear air ech-
oes. Processing such a large dataset was rather time-
consuming. Density functions describing the polarimet-
ric properties of clear air echoes were monitored in
order to determine how many scans were needed to
adequately characterize the echoes. As it turns out, the
density functions describing clear air echoes converged
to their final values after only three scans were ana-
lyzed. The analysis was limited to ranges greater than
24 km but less than 50 km. This placed the analysis
domain beyond the ranges where ground clutter was
noted and within the regions where clear air echoes
were observed. Only three scans at 1.5° in stratiform
precipitation from the period 0700-0900 UTC 17 De-
cember 2004 and three scans of convective precipitation
from 0700-0900 UTC 26 June 2005 were needed to
estimate density functions for precipitation. Ranges in
stratiform precipitation were required to be greater
than 5 km in order to avoid ground clutter. Convective
precipitation was observed within ranges of 50-200 km.

In the next step, the spatial variability is calculated
for Zpr and ®pp. Here, the spatial variability is ex-
pressed as a root-mean-square difference or texture:

(m—1)2

i=—(m—1)2 j=—(n—1)2

(n—1)2

(ya,b - ya+i,h+j)2

Texture(y,,) =

where a and b represent the azimuth and range of the
gate. The texture of Zpi and ®pp (y) is computed in a
box consisting of three pixels in azimuth direction (m)
and three in range direction (n) centered on the gate.

) : @

Provided an azimuthal resolution of 0.5° and a range
resolution of 240 m, the texture is representative of a
1.5° X 720 m area. This area increases with range; thus,
the texture variable will have a range dependence.
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Fi1G. 1. Reflectivity factor (Zy;) in dBZ at an elevation angle of 0.4° at 0800 UTC 3 Jan 2005.

Figure 2 shows the average texture of Zr and ®pp
plotted as a function of range using 12 scans at 1.5°
from the period 0400-0500 UTC 4 July 2005. Up to
approximately 45 km, texture values decrease with
range. Noisy values of Z,i and ®,, are more prevalent
at close range, where ground clutter is encountered (see
Fig. 1). Texture values are thus intrinsically higher close
to radar. Beyond a range of approximately 45 km, the
texture values increase due to natural variability of Zpg
and ®p within the 1.5° X 720 m area, which also in-
creases with range. The same dataset described above is
used to empirically correct the range dependence of
texture calculations for all cases analyzed hereafter.
The correction procedure assumes that the textures of
Zpr and Ppp increase linearly beyond a range of 45
km. Lines are fit to the data shown in Fig. 2, and texture
values measured beyond 45 km are subsequently re-

duced to adjust for the range dependency. It is noted
that the 45-km range setting and the slope of the linear
fit depend on the spatial structure of the precipitation
as compared to the radar bin sizes. The range and de-
gree of corrections that need to be applied to texture
fields should be examined and optimized for precipita-
tion events typically observed near the radar.

Next, density functions of pyy(0), texture of Zpg,
and texture of &, are computed for each class (i.e.,
precipitation, ground clutter, and clear air echoes) us-
ing Gaussian kernel density estimation (Silverman
1986). The estimate of the data density is computed as
follows:

En) 1)L o

fio) =
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F1G. 2. Range dependence of (a) texture of differential reflec-
tivity and (b) texture of differential propagation phase before and
after empirical correction. Dataset is comprised of 12 scans at an
elevation angle of 1.5° from the period 0400-0500 UTC 4 Jul 2005.

where f(x) is the density function; o is the smoothing
parameter or bandwidth; 7 is the total number of data
points; X; is the ith observation of pyy(0), texture of
Zpr, or texture of ®pp; and x is the independent vari-
able [pyv(0), texture of Zp g, and texture of ®pp]. The
bandwidth controls the smoothness of the resulting
function, where an estimate of the bandwidth is sup-
plied here using Silverman’s rule (¢ = 1.06SDn~'?),
where SD refers to the standard deviation computed
from the actual distribution. The result of applying the
Gaussian kernel is a function that is similar to a
smoothed histogram. It has the advantage of being con-
tinuously differentiable, and the smoothing parameter,
which is equivalent to the bin width in a histogram, is
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chosen objectively. All density functions are normal-
ized so that the areas under each curve are equal to one.

b. Results

Figure 3 shows density functions of pyy(0), texture of
Zpr, and texture of ®p for precipitation, ground clut-
ter, and clear air echoes. These three polarimetric vari-
ables are used in the fuzzy logic algorithm because their
distributions in precipitation are distinct from their dis-
tributions in nonprecipitating echoes. A density func-
tion for nonprecipitating scatterers is computed by sim-
ply computing the average values for clear air echoes
and ground clutter. The computed density function of
puv(0) for precipitation has a mode of 0.97, while the
mode for clear air echoes is 0.42 (Fig. 3a). Moreover,
the density function for py(0) in precipitation has very
little overlap with the density function representing
clear air echoes. Therefore, the use of pyy(0) in a fuzzy
logic algorithm aids in the segregation between precipi-
tation and clear air echoes. The density function of
prv(0) for ground clutter has a mode of 0.92 and over-
laps the density function of pyy(0) for precipitation.
Zrnic et al. (2006) also found significant overlap be-
tween precipitation and ground clutter histograms at S
band. Density functions from additional variables are
thus needed in order to effectively remove ground clut-
ter from precipitating echoes.

The density function of the texture of Z,g for pre-
cipitation has a mode of 0.4 dB, while the modes of the
clear air echoes and ground clutter distributions are 2.5
and 5.2 dB, respectively (Fig. 3b). The ground clutter
density function of the texture of Zyy is well separated
from precipitation, while there is more overlap between
precipitation and clear air echo functions. The density
function of the texture of @ for precipitation has a
mode of 4°, and values rarely exceed 20° (Fig. 3c). The
modes of the density functions of the texture of @, for
clear air echoes and ground clutter are 35° and 125°
respectively. The precipitation density function is nar-
row and distinct from the nonprecipitating scatterers.
The texture of ®,p is a very useful parameter for iden-
tifying nonprecipitating echoes. All density functions
shown in Fig. 3 are used collectively as membership
functions in the fuzzy logic algorithm.

3. Methodology of the polarimetric fuzzy logic
algorithm

The goal of this fuzzy logic algorithm is to incorpo-
rate polarimetric quantities [i.e., pyv(0), texture of
Zpr, and texture of ®@pp] to determine whether the
measurement was made in precipitation or was con-



1444

0.2

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 24

0.25

a ) —=—Ground Clutter
-~ Clear Air Echoes

0.15 —
— Precpitation

-e—Non-precipitation

Density

0.05

0.2 0.4 0.6

Cross-Correlation Coefficient

-=—Ground Clutter
—o—Clear Air Echoes
0.1 — Precpitation

-e—Non-precipitation

0.01 |

Density

0.001

0.0001

50
Texture of Differential Propagation Phase (deg)

100 150 200 250

taminated by nonprecipitating echoes. It should be
noted that no ground clutter rejection through spectral
processing of Doppler velocities has been applied to
raw Z; data. The goal of this study is to examine the
benefits offered by polarimetry to improving data qual-
ity. A schematic of the fuzzy logic algorithm is shown in
Fig. 4. The classifier and ensuing terminology follows
the hydrometeor particle identification algorithm used
in Vivekanandan et al. (1999).

First, raw measurements of Zy, Zpg, pav(0), @Ppp,
and radial velocity (V,) are collected. Additional fields,
such as the mean absolute difference in reflectivity be-
tween adjacent pulses at a given range gate (or sigma;
Nicol et al. 2003), texture of Zg, and texture of ®pp,
are computed. At each pixel, the aggregation value (Q)
is calculated for each ith class (i.e., clear air echoes,
ground clutter, and precipitation) as follows:

3

Zf(x)j X W,
0=,
w.

J

)

3
j=1
where f(x) is the membership value for the jth polari-
metric quantity [i.e., pgv(0), texture of Zpg, and tex-

ture of ®pp]. Equation (3) enables the polarimetric

Density

b) —s—Ground Clutter

0.2
- Clear Air Echoes

— Precpitation
0.15
-e— Non-precipitation

10
Texture of Differential Reflectivity (dB)

Fi1G. 3. Empirically estimated density func-
tions [f(x)] of (a) cross-correlation coefficient
[prv(0)], (b) texture of differential reflectivity
(Zpg; dB), and (c) texture of differential propa-
gation phase ($pp; °) for the classes indicated on
the plots. Density functions were derived using
observations from a C-band polarimetric radar
and serve directly as membership functions in a
fuzzy logic algorithm. The shaded regions (in
gray) showing the area overlap between non-
precipitation and precipitation classes control
the weight applied to each variable.

quantities to be weighted by W. The weights are deter-
mined objectively by first computing the area overlap
between precipitation and nonprecipitation scatterers,
as in Cho et al. (2006). A membership function for
nonprecipitation scatterers was calculated by averaging
the membership functions representing clear air echoes
and ground clutter. If it were desirable to distinguish
between the different types of nonweather scatterers
(i.e., clear air echoes versus ground clutter), then an
array of weights would be needed for each variable and
each class comparison. This study is merely aimed at
segregating precipitation from nonprecipitating echoes;
thus, a single weight is used for each polarimetric vari-
able. The overlap areas between precipitation and non-
precipitation (shaded in gray in Fig. 3) are equal to
0.243, 0.203, and 0.081 for pyv(0), texture of Zyg, and
texture of ®pp, respectively. These areas are used to
compute the weights as follows:
1

42

Jj=1

1
W, A @
Thus, the texture of @ has 3 times more weight than
puv(0) and more than double the weight of the texture
of Zpg.
The membership values are simply looked up from

the membership functions provided in Fig. 3. For in-
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F1G. 4. Schematic of the polarimetric fuzzy logic algorithm to separate precipitating from nonprecipitating

echoes.

stance, if the observed py(0) is 0.97, then the mem-
bership value of the pixel [ f(x)l] being precipitation is
0.149, 0.030 for ground clutter, and 0.007 for clear air
echoes. The weighted aggregation value (Q) is then
calculated for each ith class given membership values
corresponding to pyy(0), the texture of Zpg, and tex-
ture of ®pp [ie., f(x),, f(x), and f(x)s]. The class is
then determined by comparing the weighted aggrega-
tion values. The class is assigned to the pixel based on
the maximum aggregation value. While the fuzzy logic
algorithm has the capability to segregate between clear
air echoes and ground clutter by applying appropriate
weights, the primary intention of the algorithm is to
separate precipitation from nonprecipitation echoes.
For this reason, results in section 4 are presented by
combining clear air echoes and ground clutter into a
single, nonprecipitation echoes class.

The approach of taking the maximum aggregation
value differs from the fuzzy logic classifiers used in
Kessinger et al. (2001) and Cho et al. (2006). Both stud-
ies use empirical curves obtained for the condition of a
pixel belonging to a class given radar measurements. A
membership value for a given class is then determined
by normalizing f (x); by the sum of ]A“(x)_,- values obtained
for all three classes. This normalization process is con-
sistent with the statistical model discussed in Bringi and
Chandrasekar (2001). It is noted, however, that the
aforementioned classifiers establish thresholds for a
pixel belonging to a class as opposed to taking the maxi-
mum aggregation value, as is done in this study. When
the maximum aggregation value is chosen, as proposed
herein, normalizing membership values by a constant
has no effect on the final class determination.

A brief discussion regarding the use of aggregation
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TABLE 1. Empirical thresholds to suppress erroneous class
assignments for precipitation, ground clutter, and clear air echoes.

Suppressed class

Variables Thresholds assignment

Prv(0) <0.7 Precipitation
Dpyp <—40° Precipitation
Zy <5dBZ Precipitation
Texture of ®p,p >100° Precipitation
Pulse-to-pulse variability of Z,, >5dB Ground clutter
Radial velocity >5ms”! Ground clutter
Zn >30dBZ Clear air echoes

values, as in Zrnic et al. (2001), versus multiplicative
values, as in Liu and Chandrasekar (2000), is war-
ranted. In a multiplicative fuzzy logic algorithm, a
membership value of zero computed from a single
membership function for a given class will prohibit that
class from being assigned, even if the measured variable
(e.g., texture of Zpi) was in error. By weighting and
summing the values, a class can still be assigned even if
an individual membership value is zero. The additive
approach thus considers inherent errors associated with
radar measurements (e.g., noise, partial beam filling,
reduction of reflectivity with height, miscalibration, ra-
dome wetting effects, etc.). The aggregated values,
however, are more similar for different classes com-
pared to values obtained by multiplication. This means
that there is a greater chance that classes will be
assigned inappropriately using aggregated values.
Thresholds are thus applied based on the variables
listed in Table 1 where it is certain a given class must
not be assigned. The application of these thresholds
overrules the original classification made by the fuzzy
logic algorithm. In effect, the application of thresholds
is equivalent to assigning a zero membership value in
the Liu and Chandrasekar (2000) scheme. The use of
thresholds represents a compromise between fuzzy
logic algorithms that maximize the sum versus the prod-
uct. These thresholds were tuned to the Trappes C-
band radar and may need to be optimized for other
radars.

The classification fields are produced on a 1066
pixel X 720 pixel grid corresponding to a resolution of
240 m X 0.5°. The fields are resampled on a 512 pixel X
512 pixel Cartesian grid having a resolution of 1 km X
1 km. A despeckling algorithm is then applied to the
classification field based on the following rules. A 3 X
3 region surrounding each pixel is examined. If the cen-
tral pixel is determined to be precipitation and less than
three of the neighboring pixels are identified as precipi-
tation, then the central pixel is assumed to be isolated
and is reassigned to the clear air echo class. If the cen-
tral pixel is determined to be clear air echo and more
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than six of the surrounding pixels are precipitation pix-
els, then the clear air echo designation is reassigned to
the precipitation class. This despeckling step produces
spatial continuity in the resulting classification fields.

Figure 5 shows radar reflectivity, pyy(0), texture of
Zpr, texture of @p, and the resulting classification for
a single scan at 1.5° at 0745 UTC 23 June 2005. Analysis
of the reflectivity image shows ground clutter with Zy
values as high as 60 dBZ within 10 km of the radar and
clear air echoes with Z;; < 0 dBZ within 60 km. Re-
flectivity values exceeding 40 dBZ from anomalous
propagation were observed to the northwest of the ra-
dar. Precipitation with Zy between 5 and 35 dBZ was
organized in a band to the southwest and southeast of
the radar at ranges between 80 and 150 km. Values of
puv(0) were at least 0.97 in the precipitating echoes,
while they were approximately 0.3-1.0 and 0.4-1.0 in
ground clutter/anomalous propagation and clear air
echo echoes, respectively. The wide range of pyy(0)
values observed in nonprecipitating echoes requires ad-
ditional information provided by the texture of Zpg
and texture of @ fields to adequately separate them
from precipitating echoes. Values of the texture of Zpr
in the light rain region were less than 0.5 dB, while they
were greater than 1.0 dB in ground clutter. Clear-air
echoes, however, do not exhibit high spatial variability
in Zpg. Values of the texture of Z in clear air echoes
are similar to those observed in precipitation. The tex-
ture of @, images shows that values in precipitation
are less than 5°, while they range from 10° to 100° in
nonprecipitating echoes. The classification field was
then computed using the proposed fuzzy logic algo-
rithm. The results indicate that the nonprecipitating
echoes were properly identified. It is noted that clear
air echoes were identified in a small region enveloping
the precipitation. The close proximity of these echoes
to the precipitation region suggests that their classifica-
tion as being clear air echoes is not entirely accurate.
Polarimetric quantities measured at low signal-to-noise
ratio are more prone to errors. In addition, the com-
puted texture fields are subject to edge effects in these
regions. Nonetheless, reflectivity values are less than 5
dBZ, which is too small to contribute to rainfall-rate
estimates. From the perspective of identifying and re-
moving nonprecipitating echoes, the fuzzy logic algo-
rithm was successful for this particular scan.

4. Results

The previous section demonstrates how the polari-
metric fuzzy logic algorithm performed for a single
scan. The efficacy of the algorithm is evaluated more
thoroughly in this section by examining three different
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cases that span 1-24 h. Reflectivity values in the algo-
rithm-identified precipitating regions are converted to
rainfall-rate estimates using the Marshall-Palmer Z—R
relationship (i.e., Z = 200R"®) and accumulated over
the event duration (Marshall and Palmer 1948). To as-
sess the potential impact of nonprecipitating echoes on
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F1G. 5. Images of (a) reflectivity factor (Z;; dBZ)
and the three variables used in the polarimetric fuzzy
logic algorithm: (b) cross-correlation coefficient
[prv(0)], (c) texture of differential reflectivity (Zpg;
dB), (d) texture of differential propagation phase (Pp,p;
°), and (e) classifications from the fuzzy logic algorithm
at 0745 UTC 23 Jun 2005 at an elevation angle of 1.5°.

rainfall accumulations, reflectivity data from algorithm-
identified nonprecipitating echoes are converted to rain
rates and accumulated in the same manner as precipi-
tating echoes. The sum of the precipitation and non-
precipitation accumulation fields shows the result if no
data quality checks were performed on reflectivity data.
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The accumulation maps from precipitating and non-
precipitating echoes are then compared for a case that
had no precipitation but significant ground clutter and
anomalous propagation, a predominately widespread
rainfall case with a small region of ground clutter, and
a case with intense convection, clear air echoes, and
ground clutter. It is recognized that this evaluation
methodology does not have the benefit of a ground
truth dataset. However, the evaluation is performed
over several hours for cases that were carefully studied
in order to understand the various sources of the ech-
oes.

a. A nonprecipitation event with ground clutter and
anomalous propagation

Classification results were produced every 15 min
from 1400 to 2000 UTC 15 January 2005 using data
collected at an elevation angle of 0.4°. Visible satellite
imagery was inspected to verify that indeed there were
no clouds in the vicinity of the radar. Accumulations
from algorithm-identified precipitating echoes and po-
tential accumulations from nonprecipitating echoes are
compared. The impact of reflectivity from algorithm-
identified ground clutter and anomalous propagation
on rainfall estimates is shown in Fig. 6a. Rainfall esti-
mates exceeding 200 mm would have accumulated
within 10 km of the radar if echoes from ground clutter
were not adequately removed. Echoes from anomalous
propagation would have resulted in rain accumulations
as high as 5 mm in an arc to the west of the radar at a
range of approximately 100 km. A similar region of
contamination exists to the north of the radar between
ranges of 170-200 km. The polarimetric fuzzy logic al-
gorithm could be judged as perfectly skillful only if
there were no accumulations from precipitation echoes.
Accumulations from algorithm-identified precipitating
echoes are very close to zero except for isolated pixels
and a small region to the north of the radar (Fig. 6b). A
closer inspection of the accumulations in these regions
revealed that the accumulations are a fraction of 1 mm
and are negligible.

b. A widespread rainfall case with a small region of
ground clutter

The polarimetric fuzzy logic algorithm classified pre-
cipitating and nonprecipitating echoes for 12 scans of
data at an elevation angle of 1.5° from the period 0400—
0500 UTC 4 July 2005. Movie loops of the polarimetric
variables were analyzed to aid in determining the
sources of the echoes. This case was dominated by
widespread rainfall, but a small region of ground clutter
was noted near the radar. Echoes from ground clutter
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were identified from the movie loops because they re-
mained stationary. Nonprecipitating echoes were then
segregated from precipitating echoes using the auto-
mated fuzzy logic algorithm. Figure 6¢ shows rainfall
accumulations that would have resulted from nonprec-
ipitating echoes. Isolated pixels from ground clutter
within 10 km of the radar would have contributed as
much as 100 mm to an hourly rainfall accumulation
map.

Nonprecipitating echoes were incorrectly identified
on the outer fringes of raining regions between 200 and
250 km in range. Beam heights exceeded 5 km at these
long ranges; thus, the radar was observing reflectivity
values <10 dBZ associated with ice. As shown in Ta-
ble 1, precipitation classifications are not permitted
with echoes that have reflectivity <5 dBZ. In effect,
the polarimetric fuzzy logic algorithm and perhaps
the polarimetric quantities themselves were useful
up to a range of approximately 200 km with this case.
The range at which the algorithm is effective improves
with lower radar elevation angles and with deep, con-
vective storms that are more visible to radar at far
range.

Figure 6d shows accumulations from reflectivity ob-
served in algorithm-identified precipitating echoes. The
pattern of accumulations reveals no noticeable arti-
facts that would have resulted from nonprecipitating
echoes that were not adequately removed. Some
isolated pixels within 5 km of the radar, however,
have zero accumulations. These pixels were identified
as ground clutter and thus created small holes in
the rainfall accumulation field. The signals at these
pixels were mixed between precipitation and ground
clutter. Spectral processing methods will be necessary
to separate the precipitation versus nonprecipita-
tion characteristics of the spectrum. Otherwise, these
holes can be simply mitigated by spatially interpolating
data from nearby pixels that were classified as precipi-
tation.

c. A case with intense convection, clear air echoes,
and ground clutter

The fuzzy logic algorithm identified nonprecipitating
and precipitating echoes for 96 scans of data collected
at an elevation angle of 1.5° from the period 0000-2345
UTC 23 June 2005. Figure 6e shows accumulations
from ground clutter, clear air, and solar radiation. Re-
flectivity from ground clutter within 5 km of the radar
results in rainfall accumulations exceeding 200 mm at
several pixels. Reflectivity from clear air echoes results
in accumulations generally less than 1 mm extending
out to a range of 70 km. The impact of clear air echoes
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on radar rainfall estimates is not as significant as with
ground clutter, but these echoes cover a large region
and will bias long-term (e.g., daily or monthly) rainfall
accumulations. Even though a specific class was not
designated for solar radiation, artifacts from solar ra-
diation are noted along radials extending to the north-
west and northeast of the radar. The polarimetric char-
acteristics of solar radiation resembled clear air echoes
more so than precipitation. Lastly, accumulations from
nonprecipitating echoes appear to have a noisy appear-
ance. Some of these echoes are due to aircraft, but a
majority is likely due to system noise. Accumulations
from precipitating echoes, on the other hand, depict no
noticeable artifacts near the radar resulting from clear
air echoes, ground clutter, or solar radiation (Fig. 6f).
Moreover, the precipitation accumulation map does
not appear noisy in the northern part of the radar um-
brella where there was no rain. This shows that the
despeckling algorithm effectively removes isolated pix-
els that were mistakenly identified as precipitation from
noisy polarimetric observations.

5. Summary and conclusions

A fuzzy logic algorithm supplied with polarimetric
radar observations has been developed to identify and
remove nonprecipitating echoes from rainfall accumu-
lation maps. The definition of the membership func-
tions, which up to now have been based on simulations
or manual observation, has a strong influence on the
overall performance of a fuzzy logic algorithm. A meth-
odology was devised in this paper to compute density
functions of polarimetric variables and their textures
for scatterers that are known to be from precipitation
and nonprecipitating sources (e.g., anomalous propaga-
tion, ground clutter, and clear air echoes). The empiri-
cally derived density functions using Gaussian kernel
density estimation serve directly as membership func-
tions in a fuzzy logic algorithm. The weights applied to
each membership function are chosen objectively, as in
Cho et al. (2006), using the area overlap between pre-
cipitation and nonprecipitation classes. This automatic
methodology to derive membership functions in fuzzy
logic algorithms offers the following advantages:

« It is based entirely on observations, is objective, and
thus may be readily applied to any type of scanning
radar.

e Derived membership functions apply directly to the
radar wavelength and to propagation characteristics
of the beam specific to the radar site.

¢ It works automatically without the need to adjust pa-
rameter settings.
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To evaluate the performance of the fuzzy logic algo-
rithm, three cases were studied, from which the follow-
ing conclusions have been drawn:

e The distribution of the spatial variability of @, (as
defined by a texture parameter) for precipitation ech-
oes is well separated from the density function rep-
resenting nonprecipitation echoes. This variable is
very useful in segregating precipitating from non-
precipitating echoes. The texture of Zi and pyy(0)
also aid in discriminating common contaminants to
radar-based rainfall products.

e The use of objectively chosen weights for the polari-
metric variables and their classes significantly im-
proved the skill of the algorithm.

¢ QOuter edges of precipitating echoes were occasion-
ally classified as clear air echoes. This edge effect was
more problematic at ranges greater than 200 km from
radar. The effect on rainfall accumulations, however,
is small because Z;; is generally less than 5 dBZ.

e The algorithm successfully removes ground clutter,
anomalous propagation, solar radiation, noise, and
clear air echoes from radar rainfall estimates.

¢ Handling of mixed signals, such as ground clutter and
anomalous propagation echoes embedded in precipi-
tation, may require spectral approaches using polari-
metric measurements.

Areas inviting future research are evaluating the de-
veloped fuzzy logic algorithm for additional cases in-
cluding anomalous propagation echoes embedded in
precipitation, deriving membership functions, and ap-
plying the algorithm on a polarimetric radar sited in a
different regime and operating at S- and X-band fre-
quencies, integrating the capabilities to identify ground
clutter using previously developed techniques for non-
polarimetric radars, and extending the methodology of
objectively deriving membership functions to hydrome-
teor classification algorithms (e.g., hail, wet snow, pris-
tine ice, rain, etc.).
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